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Simultaneous activation of conceptual and
procedural mathematical knowledge by means of ClassPad

Lenni Haapasalo, University of Joensuu, Finland1

and
Djordje Kadijevich, Megatrend University of Applied Sciences, Belgrade, Serbia1

If we agree that the main goal of mathematics education is to develop both procedural and conceptual
knowledge and to make links between the two, a very important research question regarding techno-
logy-based mathematics education is how different pedagogical solutions affect the relation between
the two knowledge types. This paper highlights some examples concerning that question by utilizing
recently-introduced hardware and software innovations. These allow constructions of a mental bridge
between concrete and abstract objects by simple drag-and-drop activities, as from geometric to
algebraic window, and vise versa.

Knowledge distinction and four relations

After a careful analysis of the studies concerning conceptual and procedural mathematical
knowledge, we (Haapasalo & Kadijevich 2000) noticed that it is especially the dynamic and
semantic view of conceptual knowledge, which should be highlighted more clearly. In our
view, the two knowledge types can, in some cases, be distinguished only by the level of
consciousness of the applied actions. We make the following distinction:

• Conceptual knowledge (abbreaviated to C through this paper) denotes knowledge
of and a skilful “drive” along particular networks, the elements of which can be concepts,
rules (algorithms, procedures, etc.), and even problems (a solved problem may introduce a
new concept or rule) given in various representation forms.

• Procedural knowledge (abbreaviated to P) denotes dynamic and successful uti-
lization of particular rules, algorithms or procedures within relevant representation forms.
This usually requires not only the knowledge of the objects being utilized, but also the
knowledge of format and syntax for the representational system(s) expressing them.

P often calls for automated and unconscious steps, whereas C typically requires
conscious thinking. However, P may also be demonstrated in a reflective mode of thinking
when, for example, the student skillfully combines two rules without nowing why they work.

Four relations concerning the theoretical/empirical links between P and C (the P-C
links) can be realized in the existing literature on this topic (see Haapasalo & Kadijevich
2000, pp. 145-146).  These are:
• Inactivation view (I): P and C are not related (Nesher 1986; Resnick & Omanson 1987).
• Simultaneous activation view (S A): P is a necessary and sufficient condition for C

(Hiebert 1986, Byrnes & Wasik 1991; Haapasalo (1997).
•    Dynamic Interaction view (DI): C is a necessary but not sufficient condition for P
     (Byrnes & Wasik 1991).
 • Genetic view (G): P is a necessary but not sufficient condition for C (Kline 1980, Kitcher

1983, Vergnaud 1990, Gray & Tall 1993, Sfard 1994).
 Having in mind different student abilities, various teaching approaches and topics with
associated problems it is appropriate to stress that these four views do not evidence any
general conclusion regarding the relation between P and C (cf. Kadijevich 2003). In this paper
we highlighten some pedagogical implications of the DI and SA views.

                                                            
1 Emails: lenni.haapasalo@joensuu.fi   and   djkadijevic@megatrend-edu.net
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 For finding pedagogical interpretations for the four views above, we define two
approaches as follow:
 •  Educational approach is based on the assumtion that P depends on C. Thus, the
logical background is DI or SA. The term refers to educational needs, typically requiring a
large body of knowledge to be transferred and understood.  
 • Developmental approach assumes that P  enables C development. The logical
background is G or SA, and the term reflects the philogenetic and ontogenetic nature of
mathematical knowledge.
 We refer to Haapasalo & Kadijevich (2000 pp. 147-153) for a detailed characteri-
zation of the two approaches, making here just the remark that the dominance of P over C
seems quite natural both in the development of scientific and individual knowledge. A
reasonable pedagogical idea in any topic could be to go for spontaneous P. On the other
hand, it seems appropriate to claim that the goal of any education should be to invest on C.

 Dynamic interaction and simultaneous activation

 We will start representing the two views by using examples from the first MODEM study
concerning the conceptual field Proportionality - Linear Dependence - Gradient of a Straight
Line through Origin, denoted shortly by C1 hereafter. For being able to represent how the
educational approach is utilized, and how the developmental approach is used to trigger it,
the framework theory2 should be linked to the considerations (Haapasalo (1997, 2003).
Having in mind our remark above, we would like to start with a spontaneous P. We there-

fore restrict the construction space by simplifying
C1. Gradient is considered as a concrete slope, at
first. The figure on the left illustrates a nice
example of developmental starting harbor for C1.
Children can handle the situation by using spon-
taneous P  based on every-day experiences
without any explicit thinking of the mathematical
relations between the objects.   

       It is this kind of orientation ( O) that forms the first phase of the concept building.
Concerning the DI method within other phases (Definition, Identification, Production and
Reinforcement) in the figure below, we refer to Haapasalo (1997, 2003). The orientation
basically utilizes developmental approach: the interpretations are based on pupils’ mental
models and more or less naive procedural ideas. These act like a wake-up voltage in an
electric circuit that triggers another,
more powerful current  to  be  ampli-
fied again. P and C start to accelerate
each other, offering a nice opportunity
to use SA, for example. Being at the
intersection of the logical definitions of
the two approaches, SA links the
developmental approach and educa-
tional approach in the most natural
way.

                                                            
 2 The software can be downloaded at http://www.joensuu.fi/lenni/programs.html . Examples of  interactive
   Java applets utilizing the SA method can be found at  http://www.joensuu.fi/lenni/SA/conics.html.
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The figures below represent SA in the following way: the pupil can manipulate the concrete
slope with the mouse and look how its abstract symbolic representation is changing. On
the left-hand screen (s)he has to handle just few data chunks, whereas on the right-hand
screen (s)he should have some metacognitive abilities to regulate his/her own learning
(students and teachers often change too many things at the same time; cf. Haapasalo 2003).
Note that in SA method the construction does not need to begin from the concrete or
abstract, but between abstract and concrete, and even between abstract things.

     

For moving from the concrete slope
to the abstract mathematical concept gra-
dient we utilize the SA method again. The
figure on the left shows how the pupil can
manipulate concrete slope (procedurally)
and watch up the changes in its mathe-
matical model (conceptualization), gra-
dient: "If I model the same hill mathema-
tically, the symbolic expression (gradient)
is constant, but the visual model (slope)
can vary arbitrary."

 
 Utilizing SA method with ClassPad

 For about 20 years, it has been possible to interpret symbolic representations as graphs
by using computers. Paradoxically, students should learn to understand these symbolic re-
presentations first before being able to utilize computers in this conventional way. This
strongly contradicts modern constructivist theories on learning, and we cannot be satisfied
with this kind of one-way ticket.  Having highlighted the basic featutes of the SA method, we
would like to illustrate the same kind of activities by utilizing ClassPad 300, a modern pocket
computer made by Casio (see http://www.classpad.org/Classpad/Casio_Classpad_300.htm).
 Most ClassPad applications support simultaneous display of two windows, allowing
to access the windows of other applications from the main application and to perform drag
and drop activities (i.e. copy and paste actions), and other operations with expressions
between the Main Application work area and the currently displayed screen (Graph Editor,
Graph, Conic Editor, Table, Sequence Editor, Geometry, 3D Graph Editor 3D Graph,
Statistics, List Editor, and Numeric Solver).
 Let’s start with an example, which shows how the properties of dynamical geometry
programs have been extended to allow an interplay between algebra and geometry.
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 Example 1. Without knowing anything about the analytic expression of a circle, we can just
play harmlessly by drawing a circle in the geometry window (1), and then drag and drop the cirlcle
into the algebraic window (2). Something surprising happens: The circle seems to be expressed in
algrebraic form
  x2+y2+0.8xy-12.55=0.
Let’s manipulate (3) the
equation by changing the
constant to 25, then drag-
and-drop it to see the new
circle (4). It seems that
only the radius changes.
Let’s go back to the algeb-
raic window to do more
manipulations (5). This ti-
me, let’s change the coeffi-
cients of the second de-
gree variables: 1 to 2 and
1 to  9:The equation
  2x2 + 9 y2+0.8xy-12.55=0
seems to make an ellipse.

        Anticipating that some readers might question this kind of informal mathematics , we
would like to point out that the aim of the used SA method here has been to enhance mental
links made by the student and not to produce any exact mathematics, yet. Of course,
ClassPad modules would allow us to continue the above analysis on a more exact level by
using plotting options as ‘Sketch’ or ‘Conics’. The table below shows other types of expres-
sions you can drag and drop between the ‘Main Application’ and the ‘Geometry’ window.

Main Application window: Geometry window:
Linear equation in x and y An infinite line
Equation of circle in x and y A circle
2-dimensional vector A point or vector
2 • 2 matrix A transformation
Equation y = f(x) A curve
n • 2 matrix A polygon (each column represents a vertex)

     • Example  2. Let us construct in the Geometry window (1) the segment CJ. A drag-and-drop
activity produces its algebraic presentation 0.5x-3.55. Now we construct a line through C perpendi-
cular to CJ, and are curious to see its equation (2). Interestingly the gradient changed from 1/2 to
–2. This gives us a hypothesis, which might be worth of testing. However, this time we would like to
play with ‘General Transforma-
tion’ (3). Two matrices appea-
red in the algebraic window.
When filling and dragging-
dropping them,  the segment
moved to a new place (marked
by arrow). We make a hypo-
thesis: “A transformation seem
to consist of rotation and
translation, both being repre-
sentable by a matrix”.
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 Closing remarks

There is often a conflict between C and P (cf. Haapasalo 2003). We cannot make any definitive
conclusions about how, even less in which order, students' knowledge develops in each situation
and in each topic. Even the most abstract concepts can be based on their spontaneous ideas.
This, however, does not predestine any order for the activities, because it is the pedagogical frame-
work that matters. Our position is that doing should be cognitively and psychologically meaningful
for the student. Building a bridge between geometry and algebra - one of the major foci in the
history of mathematics - is just one opportunity to utilize ClassPad. Even if just imagination of the
user might put limits for inventing of SA environments, most operations are just too complicated to
be realized without obtaining first basic routines to use the equipment. That may be complicated
and time-consuming with a 600-page user’s guide, referring to a non-optimal user interface (cf.
Carrol 1990, p. 8; Norman 1986). We still believe that ClassPad is a promising step towards techno-
logy that would revitalize the making of mathematics even on students' free time. A detailed
analyse of TIMSS and PISA results reveal (Kupari 2003, Törnroos 2003) that it is not necessarily
the school teaching that impacts on students mathematical knowledge. This makes educational
research interesting - which factors in our education are important for the development of thinking
abilities? If we accept the assumption that the main task of education is to promote a skilful ‘drive’
along knowledge networks so as to scaffold pupils to utilize their rich activities outside school, it
seems appropriate to speak about an educational approach in the sense of our paper(s).
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