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ABSTRACT: This article reports on a study aiming to investigate an approach to the teaching and 
learning of proof based on the use of the transformation geometry tools of the software Cabri-
Géomètre. We describe a teaching experiment involving students of the 7th and 8th grade of the 
Brazilian school system. The experiment involved the design and analysis of learning situations 
intended to involve students in inductive and deductive reasoning as they engage in analyses of 
both the (intra) properties within figures and the (inter) relationships between them. By 
considering students’ interactions with these situations, we explore the role of the 
transformation tools in different aspects of the proving process, from the appropriation of 
notions of geometrical dependency to the construction of formally presented proofs. 

INTRODUCTION 

In relation to the teaching and learning of geometry in Brazil in recent history, Pires et 
al. (2000) describes three distinct phases, leading up to the development of a set of 
parameters for a National Mathematics Curriculum of Brazil in 1998. In the first 
phase, characterising the mathematics curriculum before the impact of the Modern 
Mathematics movement, geometry teaching involved a traditional approach to 
Euclidean Geometry, in which proving activities were restricted to the memorisation 
of formal proofs. The introduction of curriculum materials based on Modern 
Mathematics had the effect of reducing the emphasis given to geometry: geometry 
was to be treated in the framework of group theory, an approach that was completely 
unfamiliar to the majority of mathematics teachers. During the 1980s, mathematics 
educators started to express grave concerns about the lack of emphasis on 
geometrical content in school mathematics and a new phase in which 
experimentation was prioritised began.  

In 1998, when the parameters for the National Mathematics Curriculum of Brazil 
(PCN) were published (MEC, 1998)1, geometry returned to represent a substantial 
content area, with Space and Form one of the four blocks of study included. In terms 
of the teaching and learning of proof, two aspects of the geometry curriculum are 
particularly relevant. The guidelines propose that, in addition to geometrical activities 

 
1 These parameters are intended to serve as guidelines and are not obligatory. They have had a 

considerable impact on the delivered curriculum, not least because the recommended textbooks 
have modified their schemes of study on the basis of the parameters. 
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involving exploration and experimentation, in the 7th or 8th grade2 students should be 
expected have their first contact with proof and proving. What is intended is not a 
return to the traditional approach, students are expected, not to memorise and 
reproduce the formal proofs of others, but to engage in their own attempts to 
construct mathematical justification in ways coupled with, but eventually 
distinguished from, the use of empirical methods to verify (MEC, 1998; p.89).  

One approach increasing explored in order that an appropriate balance between 
inductive and deductive reasoning may be achieved is the integration of dynamic 
geometry systems (DGS) into learning situations associated with proof (see, for 
example, Azarello et al., 1998; Gravina, 2000; Healy & Hoyles, 2001; Mariotti, 2001; 
Marrades & Gutiérrez, 2000). There seems to be general agreement that the use of 
DGS encourages users to become more cognisant of the geometrical properties and 
relations of the visual artefacts that they produce, but that the kinds of interactions 
with these artefacts that help learners justify why and when these relationships exist 
cannot be expected to emerge spontaneously.  

All these studies have in common a focus on “classic” Euclidean geometry 
constructions and congruency of triangles as the principal tools for proof and, 
although geometrical transformations are available as construction tools in DGS, 
their potential role in the teaching and learning of proof seems not yet to have 
received much attention. This brings us to a second interesting aspect of the 
geometry curriculum in Brazil. It is suggested that students are encouraged to 
investigate congruency of figures in the plane through a study of the isometry 
transformations in order that geometry might be experienced in a dynamic rather 
than static manner. 

THE STUDY 

These considerations motivated a study into the constructions and justifications 
produced by students in learning situations involving the use of the transformation 
tools of the DGS Cabri-Géomètre. Our aim was to devise situations in which students 
would come into contact with ideas fundamental to proof. We wanted them to see 
how from a small collection of given properties – in our case, the properties 
incorporated in the isometry tools of the software – other geometrical properties 
necessarily emerge and we wanted to them to experience how by justifying the 
second set of properties the theoretical system with which they are working can be 
extended. In terms of task design, we were hence presented with a considerable 

 
2 Learners who progress through the Brazilian education system without repeating any years of 

study are aged between 12-14 years in the 7th and 8th grades.  
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challenge: to harness the potential of the Cabri-Géomètre microworld to come up 
with activities which (a) encourage students to focus on relationships between 
geometrical objects and (b) offer support for students to development arguments to 
explain why these relationships hold.  

In this article, we describe our attempts to such design activities. We should point out 
from the start that we view the process of design as a fundamental part of the 
research process, necessitating a series of iterative cycles during which tools, tasks 
and teaching interventions are developed as students’ activities with them are 
observed and analysed. In the following sections, we describe some of the critical 
decisions in this process and how they impinged on students’ strategies and 
productions. 

The learning situations we are developing are intended for students of the 7th grade 
and 8th grade and have been organised into three sets: introduction of the 
transformations reflection, translation and rotation; identification of properties 
associated with the use of the transformation tools; construction of given 
quadrilaterals using these tools, accompanied by proofs that the constructions 
guarantee the required properties. We have presently completed two cycles of the 
design phase. In the first cycle, data were collected as students worked in pairs with 
one of us, while in the second data were collected as two group of six students (a 7th 
grade group and a 8th grade group) again with one of the researcher in the role of 
teacher, working with three computers negotiated the activities in these sets. 
Students’ discussions were captured in audio recordings and their computer 
constructions and written work were collected for analysis.  

In addition to the literature related to students’ proving activities, another tool for 
analysis was drawn from the work of Piaget and Garcia (1983), who suggest that 
major mathematical ideas pass through an ordered sequence of epistemological 
levels (which also characterise the historical development of mathematical 
knowledge). They proposed that ideas develop successively through three levels – 
intra, inter and trans, whereby attention moves from internal relationships defining 
objects, to relationships between them, then to structures into which internal and 
external relationships can be organised. As we are interested in transformations in 
their own right not in the set of isometries as a structured group, we concentrated 
analysis on movements between the intrafigural and interfigural levels. These two 
levels were used both to classify task demands and as a way of interpreting students’ 
interactions with them. 



From the identification of properties associated with the transformations… 

The first set of activities introduced the reflection, translation and rotation 
tools of Cabri-Géomètre. It comprised three activities aiming to encourage students 
to focus on the properties of the geometrical designs produced using these tools. In 
each activity, students were given a starting figure and the elements necessary to 
apply a transformation tool (axes in the case of reflection, vectors for translation and 
a point and angle to apply a rotation). The task was to complete a design. Figure 1 
presents examples of the designs produced. 

 

 
Figure 1: Designs produced during the introduction activities 

These activities privilege, in the main, intrafigural analyses, with students tending to 
focus on the internal properties of the final configuration displayed on screen rather 
than external relationships by which different figures could be related. The most 
common observation made by students related to the congruency of the transformed 
objects (intrafigural according to Piaget and Garcia, as only properties internal to 
figures are considered). Interfigural analyses were observed, however, in connection 
with the use of the translation tool. Of the six pairs observed in during the second 
cycle, for example, two pairs identified that the difference between the vertices of the 
flags was determined by the length of the vectors, while four mentioned the effect of 
the vector’s direction. Figure 2 presents examples of student descriptions with 
respect to the reflection and translation activities. 

The second set of activities was designed to emphasise geometrical relationships 
more explicitly. It composed of four activities. The first activity explored again the 
conservation of within-figure distances and angles associated with the 
transformations reflection, translation and rotation in turn. The second and third 
activities involved identifying conditions under which image-figures parallel or 
perpendicular to corresponding pre-image figures could be produced, again with 
each transformation considered in turn. The fourth activity focussed students’ 
attention on the conservation of the distances between objects associated with each 
transformation. 
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"We noticed that each line is like a mirror, all the triangles 
form the same figure with equal sides and measures. Also 
we saw that the figure is symmetrical". 

"The distance between the vertices, one from each object 
is the same distances as the size of the vector. The 
direction of the vector shows the place where the object 
will be copied." 

A: Intrafigural-orientated observations of Letícia and 
Priscila (8th grade)  

b: Interfigural-orientated observations of Guilherme and 
Paula (8th grade) 

Figure 2: Students’ observations during the first activity set 

It is important to reiterate at this point that in our study it is the properties embedded 
in the isometry tools of Cabri-Géomètre that serve as the starting point for proof, that 
is, they define our theoretical reference system and can be treated by students as 
facts that do not require justification. From a mathematical point of view, the 
invariants associated with the isometries are conservation of distance between 
points, conservation of angles and conservation of alignment of points. The 
properties observed by students as they worked on the activities are consequences 
of these three postulates (in the Euclidean context of Cabri-Géomètre). We are 
hence treating the transformation tools as “geometrical primitives” (Laborde, 1993) in 
a deductive system.  

Analysis of students’ discussions during the second activity set indicates that all of 
the students were clear that figures congruent to the original result from all three 
transformations. As the extract from a discussion between two students and the 
researcher reproduced below illustrates, both intrafigural and interfigural 
interpretations permeated their interactions. Henrique e Lylli use the word “symmetry” 
to describe the three transformations. It may be that symmetrical for them is 
synonymous with congruent. In any case, they seem to have appropriated a feature 
common to the three transformation tools (they produce "copies" of figures) as well 
as beginning to discern features by which they can be distinguished – thus combining 
intra and interfigural concerns. 

Hen:  It’s these things here [the isometry tools], when you do them, you just take the 
original figures and modify it in space, like the space that it is, but it stays the same 
figure... 

Lylli: ...They are all types of symmetry. This [reflection] is a type of mirror symmetry, this 
here [translation] is symmetry moving in space, this is the difference in space 
[pointing to the vector]...here is where it shows up or down or the direction. 

Res: So your saying they are all, translation, reflection and rotation, are all types of 
symmetry? 
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Lylli: Yes. Because [rotation] is like you have a copy of this triangle and you turn it.  

Hen:  [laughing] One is symmetric symmetry, another is rotationary symmetry and one is 
translationary symmetry. 

In addition to identifying that distances and angles are invariant under the three 
transformations, we also wanted students to think about their relationships with 
parallelism and perpendicularism. That is, that segments transformed by translation 
are always parallel to pre-image segments, while, in the case of reflection and 
rotation, parallel (or perpendicular) segments result from specific configurations of 
the elements defining the transformation. To check (empirically) if the parallel or 
perpendicular conditions are satisfied, students were introduced to the tools 
parallel? and perpendicular? To a certain extent, we were aiming to  define 
these two properties in terms of the transformations. 

Students had very little difficulty in determining that when the translation tool is 
employed, images of segments are invariably parallel to the corresponding pre-image 
segments (Figure 3 shows how this task was presented to the students). Over half 
the student pairs used this result to deduce that segment and image under 
translation are never perpendicular, the rest confirmed this empirically.  

Open the file Ativ5.fig 

Using the translation tool, a segment AB of the original polygon is parallel to 
its image A’B’ 

...... always 

...... never 

......sometimes, when .............................................................. 

 

Figure 3: Determining conditions for obtaining parallel segments (translation) 

Similarly, it did not seem to be hard for students to locate the angles in rotations 
necessary to produce parallel or perpendicular images segments – although some 
pairs did not indicate all the possible values of the angle of rotation. In contrast, it 
turned out to be more difficult to determine the conditions under which parallel and 
perpendicular image segments are obtained by reflection. If students restricted their 
activities to manipulating a general axis, they were able to successfully identify the 
necessary orientation of the axis in the case of a vertical places segment, but did not 
describe the parallel relationship between axis and segment that holds for any 
orientation of AB. In contrast, in the second cycle, an intervention suggesting the axis 
was constructed, enabled students to identify the necessary conditions for producing 
parallel and perpendicular segments, with the cost that they became somewhat 
reliant on the researcher. One challenge for the next cycle is to rethink the reflection 
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activities in a way that allows students to see general relationships without losing 
control of the solution process.  

… To construction and proof 

The third set of activities involves the development of construction methods for 
familiar quadrilaterals – squares, rhombi, parallelograms and rectangles – using the 
transformation tools. We were hoping that they would distinguish between the 
properties directly constructed and those that emerged as a result of the construction 
process, then make use of the properties identified during the first two activities-sets 
(by this point displayed on a table) to build arguments justifying the relationships 
between the property sets.  

During the first cycle, it became clear that students needed some help in 
understanding what was involved in organising a proof. Once again, we intervened in 
the second cycle, providing students’ with a sequence of nine steps (statements) and 
justifications representing a (fictional) student’s proof that his construction had the 
properties of a square. The steps were organised in the correct order, but the 
justifications – largely based on the properties the students had identified – were not. 
The task was to match the justifications to the appropriate statement. Only one of the 
six pairs who tackled the activity matched all nine justifications correctly. Three pairs 
managed seven justifications, one pair five, and one pair (from the 8th grade) 
correctly matched just two justifications to the appropriate statements. These results 
suggest that the proof was rather too long to serve as the first example.  

The given square construction could also be used as a basis to build a robust 
rhombus and all the students made use of this construction procedure. The strategy 
of providing an example of the work of a fictional student hence had a marked effect 
on students’ interactions, essentially solving the rhombus construction. However, this 
allowed students a further opportunity to make sense of the given justifications and 
organise them into a proof. Of the six pairs who participated in the second cycle, 
three pairs (two from the 7th grade and one from the 8th grade), constructed proofs 
we considered correct, two groups correctly justified all the properties used in the 
construction procedure but included properties not constructed as justifications in the 
final steps, and one pair produced a list a correct statements matched with correct 
justifications but presented in no particular order. These results suggest that the 
students were beginning to engage in the process of proving, although they had not 
yet appropriated all of the “rules” of the proving discourse.   
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When it came to the rectangle and parallelogram constructions, students could no 
longer rely on the support of a given construction and had to come up with proofs of 
their own. We describe the results with respect to the parallelogram. Most pairs 
started by constructing two segments joined at one vertex, after experimenting with 
reflection, some went directly to translation, while other experimented first with the 
rotation tool. Although it is possible to construct a parallelogram using rotation, this 
involves co-ordinating two independent elements, centre and angle of rotation, 
perhaps it was because of this complexity that student pairs left the tool aside in 
favour of translation. Without exception, all students made use of a vector external to 
the figure under construction to translate a segment, rather than choosing to define 
one of its sides as the vector. By dragging the vector to be parallel and of equal 
length to the second side, those who began with two segments were able to “close” 
their parallelogram – a soft construction. The only pair who managed a robust 
construction had begun with only one segment on screen, having translated this 
segments they simply joined the vertices of the pre-image segments to their images. 

Considering the student proofs associated with this task, none of the student-pairs 
came up with a complete proof, but in all of the arguments presented, they included 
at least some correct statements and justification, which the majority attempted to 
organise into a logical chain. For example, Figure 4 presents the attempt of Henrique 
and Lylli, the 7th grade students who produced the only robust parallelogram. They 
started with the properties they had constructed (AB as parallel to CD by translation), 
and went on to try to explain the properties that resulted from their construction 
process. However, although they were correct in stating that the segments AD and 
CB are parallel, they did not justify why. They could have done so by explaining the 
relationship between these segments and the vector – an interfigural interpretation – 
in fact, not one student explicitly referred to this property in their attempts to justify, 
suggesting at the moment of proof, students are still focussed on the relationships 
within figures rather than with objects external to them.  

The third statement included in the proof of Henrique and Lylli is particularly 
interesting. They – without any outside intervention – added a line to their 
parallelogram, in order to obtain two congruent triangles, reasoning that if these 
triangles were congruent (equal), then opposite angles in the figure must also be 
equal. They argue that the line they have added could be seen a mirror, mirroring 
segments and angles, although “not in the way expected by a mirror”. They wanted, 
as another member of the 7th grade group put it, a “kind of inverted reflection”. 
Rotation could have served this purpose, but perhaps we should have introduced 
students to the tool symmetry, which produces a rotation of 180º about a point 



(reflection in a point), before expecting them to work with the more general rotation 
tool. 

    

 I know that: Because:  
 AB is parallel to CD  Because CD  is a translated 

image of AB  

 

 AD is parallel to CB  Because the two segmentos 
were created from the 
original AB and the image 
CD , joining the points at  

 

  which each segments ends 
or begins 

 

 Opposite angles of the 
figure are equal 

I created a line passing 
through B and D and it would 
as if the line ‘mirrored’ the 
segments, creating equal  

 

  segments, points and angles, 
although its doesn’t ‘mirror’ 
in the mode expected when 
symmetry (reflection)3 is 
used 

 

    

Figure 4: Proving properties of a parallelogram 

REASONING WITH TRANSFORMATIONS OR TRANSFORMATIONAL REASONING? 

Reflecting on the students’ interactions during both cycles of the study, we suggest 
that an approach to proving based on geometrical transformation in a dynamic 
geometry context holds some promise in supporting learners to begin to engaging in 
the complex process of proof. Our results suggest that the transformation tools can 
provide an accessible introduction to the notion of geometrical dependency, allowing 
students to experience visually and physically how the behaviour of some 
geometrical objects can be constructed to depend on their relationship to others. Not 
all the students however, succeeded in building constructions that were entirely 
robust using the transformations, although they did manage to use the transformation 
tools to set up appropriate properties.  

Success on the activities depended on the development of strategies involving 
movement between intra and interfigural analysis. In the identification activities, 
students seemed able to do this. But, although in their computer constructions 
students engaged in interfigural interpretations, these were not always incorporated 
in their attempts to formulate valid justifications. Nonetheless, as the proof attempt in 
Figure 4 illustrates, the transformation tools permitted, simultaneously, static and 
dynamic interpretations of the quadrilaterals produced. This double perspective 

                                            
3  In the version of Cabri-Géomètre with which the students were interacting, “reflection” has been 

translated as “simetria axial”, we saw above that students used the word “simetria” (symmetry) 
more generally to include situations involving the other isometries, but in this case it appears that 
they were referring to the transformation associated with the reflection tool.  
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resulted in arguments based on general properties and their relationship rather than 
specific observations, although the validity of the students’ arguments varied 
according to the task and construction methods employed.  

Our analysis also led us to reflect about a third type of reasoning, not inherently 
inductive or deductive, to which mathematics education researchers are currently 
attributing an important role – transformational reasoning  (Simon, 1996; Harel & 
Sowder, 1998; Arzarello & al. 1998, Gravina, 2000). According to Simon (1996), 
transformational reasoning is: 

"…mental or physical enactment of an operation or a set of operations on an object or a set of 
objects that allows one to envisage the transformations that these objects undergo and the set 
of results of these operations. Central to transformational reasoning is the ability to consider, 
not a static state, but a dynamic process by which a new state or continuum of states are 
generated." (p.201) 

We suggest that perhaps Simon is not referring to a (new) form of reasoning with a 
particular role in relationship to proof, but that his definition is characteristic of 
mathematical analyses involving both interfigural and intrafigural perspectives we 
were trying to promote in our experiment. This is a possibility we intend to explore as 
our research continues.  
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