
HAL Id: edutice-00001330
https://edutice.hal.science/edutice-00001330

Submitted on 12 Jan 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computer Experiments with Newton’s Method
J. Orlando Freitas, J. Sousa Ramos

To cite this version:
J. Orlando Freitas, J. Sousa Ramos. Computer Experiments with Newton’s Method. Jun 2003, Reims,
France. �edutice-00001330�

https://edutice.hal.science/edutice-00001330
https://hal.archives-ouvertes.fr


Computer Experiments with Newton’s Method 
J. Orlando Freitas*

orlando@uma.pt 
Escola Secundária de Francisco Franco, Funchal, Portugal 

 
J. Sousa Ramos 

Instituto Superior Técnico, Lisbon, Portugal 
 
Newton's method has served as one of the most fruitful 

paradigms in the development of complex iteration theory. 
H.-O. Peitgen, 1988 

 
Abstract 

We study the chaotic behaviour of Newton’s method with graphic calculators 
and computers. Through repeated experiments the students can explore the behaviour 
of the sequence )´(/)()(1 nnnnn xfxfxxfx −==+  where  is a quintic 
polynomial. If we expand our study of the dynamics of Newton's method to the complex 
plane, we find lots of interesting properties:  fractals, chaos, attracting periodic cycles 
and Julia sets. Our study illustrates a symbiotic relationship between technology and 
mathematics. Technology is used to develop our intuition, and mathematics is used to 
prove our intuition is correct. Much of what is known about dynamical system was 
discovered using technology, and it is natural to use technology to study the Newton’s 
method. Almost of our examples were done with the graphic calculators Voyage 200. 

)(xf

 

Introduction 
Since graphic calculators and computers are readily available to most 

students, now is an especially auspicious time to introduce students to 
Newton’s method as discrete dynamical systems. The process of iteration is 
impossible to carry out by hand but extremely easy to carry out with a calculator 
or computer. A very simple six or seven line program allows a student to 
compute hundreds and thousands of iterations of a single function. Students get 
feeling that they have the power to explore the uncharted wilderness of the 
dynamics of Newton’s method, not to mention the many, many other simple 
functions whose dynamics are less well understood. This is a radical new 
development in mathematics instruction. It gives mathematics an experimental 
component, a laboratory. Much as the physicists, chemists and biologists have 
long used the laboratory as an essential component of their introductory 
courses, now we in mathematics have the same opportunity, and the results 
should be a much higher appreciation for and recognition of the importance of 
research mathematics by contemporary students. 

The search for solutions of the equation 0)( =xf  is ancient. However, it 
was shown in the early of nineteenth century that there is no general method for 
solving polynomials of degree five or higher. Consequently, methods for 
estimating solutions of equations as simple as polynomials are necessary. 
Newton's method is generally introduced as a useful tool for finding the roots of 
functions when analytical methods fail. So we will use this method to solve the 
quintic equation by numerical methods. Some teachers think that just because 
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of computers this topic become irrelevant as a subject of learning. And 
sometimes they ask us: why students should learn such (sophisticated) 
topics/algorithms in the age of computers? We present some reasons for using 
Newton's method:  
1. The first is that Newton's method is the most common method to solve 
equation. This method is generally introduced in Calculus I courses as a useful 
tool for finding the roots of functions when algebraic methods fail. Polynomials 
used for Calculus I problems do not tend to have any further complications, but 
polynomials with interesting behavior exist. When we look inside the method, 
that is, when we consider this iterative algorithm as a discrete dynamical 
system, a lot of interesting questions appear as we will see. 
2. The second reason is that “the behaviour of the Newton map for a 
polynomial is far from well being understood” [Bal00, p.10]. The dynamics of 
Newton’s method always presents difficult problems, even as applied to 
polynomials in one variable. The chaotic behaviour of Newton's method is a 
source of investigation as much for pure mathematics as for the classroom with 
the help of a calculator/computer. When students learn that this system is not 
completely understood or that the mathematical ideas they are using were 
developed in their lifetimes, they change their opinions on the nature of 
mathematics. Rather than a collection of tricks from centuries past, 
mathematics becomes an alive and thriving discipline. We should always strive 
to give our students a glimpse of what is new and exciting in mathematics, and 
we take that opportunity in our approach.  

The basic algorithmic knowledge as a part the teaching 
and learning of mathematics is necessary for drawing the 
fractal associated to the Newton’s method. We think a student 
learn better a difficult concept when he/she studies, with some 
detail, significant examples or problems. We will present 
several interesting fractals that cannot be fully understood 
without a use of technology.  

Through repeated experiments the students can 
explore the behaviour of the sequence  where 

 is the Newton map for the quintic function f(x).  
nx

)(1 nfn xNx =+

With the current technology there are many approaches that can be 
taken toward the representation and understanding of a numerical solution to a 
problem. Generally, the numerical representation of a solution to a problem is a 
table of solution values, which may be exact or approximate. We present three 
approaches that current technology enhances: (i) the graphical or geometric 
approach, (ii) the discrete dynamical system (or sequence) approach, (iii) the 
programming approach. The graphical approach aids in student understanding 
of approximation.  The TRACE and TABLE modes of the graphical calculator 
interface the general picture of the graph and provide the user with the specific 
numerical values.  Most algorithms in numerical analysis can be written as a 
discrete dynamical system or as a system of difference equations.  We have 
found that this discrete approach to modelling is intuitive to students and with 
minimal introductory work is accessible to most students.  Finally, a more 
traditional approach to numerical solutions is to write programs for the 
algorithms as they are developed. This is a less accessible aspect of the 
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calculator, but very valuable to students for understanding computer logic and 
the student ownership of developing their own programs. We presented all 
these approaches at our work and encourage teachers to choose the approach 
that best suits their course objectives.  

In the Madeira Island (Portugal) a study on the integration of graphic 
calculator in mathematics education was carried out by the first author [Prog97] 
since 1997. We introduce Discrete Dynamical Systems in this project in 1998. 

We include some exercises and strategic activities for students. 
 

Newton’s method as a discrete dynamical system 

We begin with the basic ideas and 
terminology of iteration. Given an initial guess , 
we approximate the function by a tangent line 
passing through the point  with gradient 

. This has the form fy

0x

))(,( 00 xfx
)(' 0xf cxx +×= ('  

is satisfied by the point (,( 00 xfx mplies 
xf =0 )( 00 )(' xxf

00 )  which
. This i

+× 00 )('  and  )(xfc
))

cxxf 0 ×−=
The equation of the

00 xx

. 
 tangent line is therefore 

)(()(' 00 fxfxxfy ))(' ×−+×= .  

Solving for the root of the tangent line, which we denote , we have 1x
))(')(()('0 00010 xxfxfxxf ×−+×=  and )('/)( 0001 xfxfxx −= , as we se in the 

figure. We can find successive approximations  to the root by 
iterating this process and applying the relation 

. Notice that if  is an exact root of , we 
have , and consequently, 

,...,...,, 21 nxxx

)('/)()(1 nnnnfn xfxfxxNx −==+ nx )(xf
0)( =xf ( ) nnfn xxNx ==+1 . 

Students need to be provided 
with opportunities for practice and 
reflection on solving significant 
problems. In this respect, technology 
may play an important educational 
role, changing the focus from 
mechanical and repetitive process to 
the comprehension of algebra and 
calculus as instruments that enable the 
modeling of real situations. 

 
Newton map for the quintic f(x)=x5+c x+1 

For intermediate calculations 
we can use a calculator with CAS as 
Voyage 200. The actual calculators 
possess the web type for graphics. 
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The process of using the calculator to find the iterations helps students 
get a good numeric sense of how Newton’s method moves from a starting value 
to a root of an equation. We use . )(...)( xNNNxN n ooo=

It is possible to have stable periodic points, 
i.e.,  for some  00 )( xxN n = 2≥n ( )INn∈  and 

? To answer this question we present 
one concrete example with periodicity 2 in the 
iteration of Newton’s method for . 
N

1|)()'(| 0 <xN n

22)( 3 +−= xxxf
f has the 2-cycle 0→1→0 for f(x)= x3 -2x+2 that 

gives Nf(x)=x-(x3-2x+2)/(3x²-2). 
It turns out that it is possible, so how can we find them? 
There are two kind of possible difficulties in the Newton map as we see in 

the next figures: 

1. The simplest way that the sequence  may 

fail to converge to a root of f is when this sequence 
becomes undefined at some finite stages, i.e., when 
some iterate of  maps x onto a vertical asymptote 
of , i.e., when . By the mean theorem this 
type of nonconvergence must occur whenever f has 
more than one real root. 

)(xN n
f

fN

fN 0)(' =xf

2. The next simplest way that nonconvergence of  
 can occur is when x is periodic or eventually 

periodic under : x is periodic if  for some 

k bigger than one, its period is the least value of k 
which this hold; x is eventually periodic if 

, with . 

)(xN n
f

fN xxN k
f =)(

)()( xNxN m
f

km
f =+ 2≥k

We conclude that Newton's method can fail and we can observe that we 
must be careful with iteration in other numerical methods. Indeed the dynamics 
of Newton's method always presents difficult problems, even as applied to 
polynomials in one variable. For instance, already for quintic polynomials there 
may be open sets of initial points which do not lead to any root but instead to an 
attracting cycle of length greater than one, and the boundaries of the basins will 
usually be complicated fractals whose topology is poorly understood. Here we 
study this aspect graphically. 

A key concept in the study of discrete dynamical systems is that of  
chaos or sensitive dependence on initial conditions. There have been several 
definitions of chaos, for example, in [Dev89]. With computer experiments we 
study the existence of chaotic behaviours in the iteration of Newton's method for 
quintic functions. Probably the most important advantage is that this model is 
very intuitive and easy understood by students at many levels. Iterating this 
recursion relationship can provide quick insight and many times answers to 
problems with no analytical solution. 
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In first place we remember that the general quintic equation 
, with arbitrary coefficients c054

2
3

3
2

4
1

5 =+++++ cxcxcxcxcx i, can be 

transformed to the Bring-Jerrard type  by a Tschirnhaus 
transformation. The a

021
5 =++ axax

i can ultimately be expressed in radicals in terms of the ci 
[Wei99], [FSR03a]. However the resulting expressions are typically enormous. 
For a general quintic with symbolic coefficients they require a lot of storage. But 
this is not a problem in the computer era. And with some algebraic calculus and 
topological equivalence we can conclude [FSR03b] that the most interesting 
case for Newton map of the quintic  is for . So 
we concentrate our computers experiment in the Newton’s method for the 
quintic polynomial of the form . 

021
5 =++ axax 1)( 5 ++= cxxxf

1)( 5 ++= cxxxf

Much of the motivation for the material to be presented here is the 
following theorem due to P. Fatou [Pei86, p. 27]: 
Theorem: Let  be a rational function with a stable periodic cycle 

( , i.e., the orbit , with ), 

then such orbit can be obtained as the limit of successive images , as 

, where  is a critical point of , i.e., 

)(xN

00 )(: xxNx n =∃ )}(),...,(),(,{ 0
1

0
2

00 xNxNxNx n− 2≥n

)( c
n
f xN

∞→k cx )(xN 0)(' =cxN . 

In our case we have , so the critical points of 
N

23' ))('/()(20)( xfxfxxN f =

f are the zeros of f(x) or x=0. We remember that the zeros of f(x) are also fixed 
points of Nf, so for the iteration of Nf  we start on the free critical point x=0. 

Let us now describe the numerical experiments which are performed in 
the c-parameter plane. The bifurcation diagram is a record of the eventual orbit 
values (plotted vertically) for each value of the parameter c belongs to the an 
interval (plotted horizontally). This gives a record of how the dynamics change 
as the parameter varies.  

We need programming but with only 
few lines as we see in the right box. In this 
perspective the new technology is good. We 
use the Voyage 200 and the software 
Mathematica®. The student also has 
opportunities to write meaningful computer 
programs to test a growing theory. We find it 
appropriate to begin computer work by giving 
to the class a program with which everyone 
can begin to experiment.  

input Cmin, Cmax 
1)( 5 ++= xcxxf  

0→x 
)('/)()( nnnnf xfxfxxN −=

for c=cmin to cmax 
  for i=1 to 150 
     Nf(x) = x 

   if i>120 then  print (c, x) 
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The program for Voyage200 is very similar to the pseudocode presented 
above. 

In the bifurcation diagram the point ( ))0(, Nn
fc

c  are plotted.  In our case 

 is the Newton map for . We use parameter values c 

between and 0. 

)(xN n
fc

1)( 5 ++= cxxxf

 1.649-

 

We can see chaotic 
behaviour in the left graph where 
there is all kind of periodic point. 
With change [ ]maxmin,CCc∈  in the 
previous program, we can see better 
the periodic point.  

For this kind of graph we can 
use the graphic calculator as we 
exemplify below. 

We experiment various chance in parameter c near -1.33 (period 2) and 
near -1 (period 3) and we obtain similar graphs, this is what we call self-
similarity. This time we use the calculator Voyage 200. 

Periods 2, , …, … 22 n2

 
[ ] [ 8.0,4.033.1,34.1 −×−− ]  

Periods 3, 23× , , …, … 223× n23×

 
[ ] [ ]1.1,3.00.1,1.1 −×−−  

 

We found period three and period three implies chaos [LY75]. 
Indeed for these bifurcation diagrams it is very laborious using the 

graphic calculator because the looping in the program for iteration and so it is 
not appropriate to use in the classroom. We suggest preferentially the use of 
computer in the classroom instead of graphic calculator however students at 
home can use graphic calculator. The Voyage 200 is similar with the TI-89/92. 

Students can easily investigate in the classroom the chaotic behaviour of 
Newton’s method with computer graphics as a tool. Since computers and 
graphic calculators can readily graph approximate solutions, students must be 
prepared to interpret what they see and evaluate the validity of their 
computations.  

The computer is an instrument of data processing, and the concept of 
“data” seems to denote numbers, not pictures. In actual fact, however, pictures 
are just another means of describing content: the results are called computer 
(generated) graphics and the mathematicians instead of giving an abstract 
presentation in so many dry word, they have chosen pictures as we exemplify 
here. It is important that we teach our students to think graphically as well as 
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analytically since graphical illustration of quantitative information is much more 
common in today’s society. 

Julia Sets 

If we expand our study of the dynamics of Newton map to the complex 
plane, we find lots of interesting properties. Fractals, chaos, attracting periodic 
cycles, Julia sets, and other phenomena are present, depending on what 
functions we study. Although Newton's method is an old application of calculus, 
it was discovered relatively recently that extending it to the complex plane leads 
to a very interesting fractal pattern. The study of Newton's method in the 
complex setting was initiated by E. Schröder (1870/71)  and A. Cayley (1879), 
for quadratic polynomials [Pei91, p. 356]. They where able to study the 
quadratic case .  Cayley commented that “The solution is easy and 
elegant in the case of quadratic equation, but the next succeeding case of the 
cubic equation appears to presents considerable difficulty”.  

012 =−z

We can understand what Cayley 
conjectured with the Julia’s work and 
Fatou’s work in the beginning of the XX 
century. The immense progress that Julia 
and Fatou were able to make must be 
valuable all the more because in those 
days there were no computers to aid in 
the understanding of the complicated 
mater; instead they had to rely completely 
on their imagination. 

But nowadays in the classroom we 
can understand what Cayley conjectured 
with the help of a graphic calculator or 
computer. The figure at right exemplifies 
the complexity of Newton map for the 
equation  studied by Cayley.  013 =−z

 
Julia set for 

2

3

1
3

1

n

n
nn

z

z
zz

−
−=+  in the complex 

plane. Each region converges for one 
of the 3 solutions of  
represented by the crosses. 

013 =−z

These last figures are good examples of a theme that is easily computed 
by students in an introductory numerical course and that leads to interesting, 
and largely unexplored, questions that might entice a student to get interested 
in numerical analysis.  

The Julia set is the set of repelling periodic points of the map and their 
limit points. 

The Julia set is invariant under the action of the map 
and has chaotic dynamics. Trying to infer the structure of 
these boundaries is very difficult without a computer.  

With this example students discover how Newton’s 
method can lead to a simple fractal. We can do the same 
for the Newton map of the quintic function. The picture at 
right represents the Julia set for Newton map associated 
to . 1)( 5 +−= zzzf
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Activities for students 

1. Exercises with calculator/computer 
With the help of a calculator/computer try to solve the next exercises. 

1. Let . Find a value of c for which there is an interval 1)( 5 ++= cxxxfc I  in 

which the Newton map  has periodic points of all periods.  )(xN f

     Observation: Investigate the Sharkovsky order. 

2. Let x0 and A be positive real numbers and consider the sequence defined by  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+

n
nn x

Axx
2
1

1    (Babylonian algorithm).  

a) Find a function f such that  (Newton’s method). )( 0xNx n
fn =

b) What is the limit of the sequence x0, x1, x2,..., in case that exists? 

c) Apply this algorithm for the calculation of  n A  with . 1>n

Note: This algorithm is often used in square root routines for computers. 

 

2. Student Project: Feigenbaum (Universal) Constants 
Investigations of the distances between successive period-doubling 

bifurcations led to the discovery of a new kind of scaling, and a new 
mathematical constant that is universal in the sense that it arises in a large 
class of functions. 

Let f(x) a quadratic polynomial; we 
exemplify with . In the 
right figure the  is such that 

, i.e., a  is a period 
doubling bifurcation point. And for the 
sequence  see the figure at right.   

)1()( xaxxfa −=

na

1)(')( −=n
n af n

nb

For the quadratic function, we have 

91...4.66922160lim
1

1 =
−
−

=
−

+

∞→ nn

nn

n aa
aa

δ  and 

 50...2.50290787lim 1 == +

∞→ n

n

n b
b

α  

 

 
With the help of your calculator/computer try to calculate approximately the two 

limits 
1

1lim
−

+

∞→ −
−

=
nn

nn

n cc
cc

δ   and  
n

n

n b
b 1lim +

∞→
=α  for the Newton map of the quintic 

, i.e., for 1)( 5 ++= cxxxf ).('/)()(1 nnnnfn xfxfxxNx −==+  

Observation: You must investigate more about Feigenbaum Constants.  
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Conclusion  

Here we present new material. But the first author used part of these 
activities in the cubic equation during a semester for secondary teachers in 
1998/99 and in 1999/00 he collaborates with these teachers and they used 
some of his activities with their students in their secondary school [BCGL00]. In 
all projects of the first author [Pro97] he emphasise the change from traditional 
pencil and paper skills to a technology-supported modelling approach and he 
uses calculator with CAS. The second author always presents the Newton’s 
method in his course at university and he uses the Mathematica®  software. 

It is worth including dynamical systems in our courses? Our example 
illustrates a symbiotic relationship between technology and mathematics. 
Technology is used to develop our intuition, and mathematics is used to prove 
our intuition is correct. Much of what is known about dynamical system was 
discovered using technology, and it is natural to use technology to study the 
dynamical systems and in particular the Newton’s method. It is also important to 
recognize the fact that many of the standard computational techniques that are 
part of ours courses are embedded in computer-base mathematics systems as 
Derive (TI-89/92) and Mathematica®. This gives us the freedom to concentrate 
more on the underlying mathematics and less on the symbolic manipulation.  

One of the fundamental uses of computer graphics is in science and 
education. Iterating a function is a simple process, yet the results are often very 
complex. Students also see Newton's method in a new light and are surprised 
and fascinated by the intricacies of the dynamics. The computer offers us the 
possibility of experimentation: student can check the influence of parameters in 
the Newton’s method, the result of transformations, and the limiting values of 
iteratively applied calculation. 

One might also wonder why we could choose to use a method that is 
subject to problems like those just demonstrated. The reason is speed: 
Newton's method exhibits quadratic convergence first proved by Fourier in 
1818. Essentially, this means that the number of correct digits to the right of 
decimal place in our estimate doubles with each iteration of Newton's method. 

We found the investigations of fractal and chaos to be a marvellous topic 
for secondary school and for the university. In addition it is suited for the 
discovery approach to learning and the incorporation of technology. These 
activities allow the mathematics teacher and students to see new topics in 
mathematics curriculum which are more complicated without technology, 
namely discrete dynamical system. Dynamical systems is currently one of the 
most actively researched branches of mathematics. Applications to modelling 
the weather, the central nervous systems, and the stock market suggest the 
intrinsic nature of dynamical systems. 

In the mathematics education reform at Chalmers [Lar01, p. 6] they also 
include the Newton’s method and they suggest that “each student implements 
Newton’s method in Matlab”. 

One of the aims in teaching mathematics should indeed be to “give the 
young a feeling for the beauty and eloquence of mathematics and its profound 
relationship with the real world”, and it is difficult to see how the mathematics 
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teacher can ignore an aspect of mathematics that is accessible with quite 
elementary mathematical ideas: fractal and chaos. 
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