
HAL Id: edutice-00000706
https://edutice.hal.science/edutice-00000706

Submitted on 15 Nov 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A problem-solvers’ assistant : towards scalable learning
environments to foster planning ability

Itoh Kohji, Hasegawa Hiroyuki, Kaneko Hiroshi, Mihara Eisuke, Matsuda
Hisayuki, Kakegawa Jun’Ichi, Fujii Masahiro, Itami Makoto

To cite this version:
Itoh Kohji, Hasegawa Hiroyuki, Kaneko Hiroshi, Mihara Eisuke, Matsuda Hisayuki, et al.. A problem-
solvers’ assistant : towards scalable learning environments to foster planning ability. Technologies de
l’Information et de la Connaissance dans l’Enseignement Supérieur et l’Industrie, Oct 2004, Com-
piègne, France. pp.177-182. �edutice-00000706�

https://edutice.hal.science/edutice-00000706
https://hal.archives-ouvertes.fr

A problem-solvers' assistant :
towards scalable learning environments to foster planning ability

ITOH Kohji, HASEGAWA Hiroyuki, KANEKO Hiroshi, MIHARA Eisuke, MATSUDA Hisayuki
KAKEGAWA Jun’ichi, FUJII Masahiro, ITAMI Makoto
Department of Applied Electronics, Tokyo University of Science

2641 Yamazaki, Noda-shi, 278-8510 JAPAN
Phone: +81 4 7124 1501 ext. 4206 Fax: +81 4 7122 9195

E-mail: itoh@te.noda.tus.ac.jp, hasegawa@itlb.te.noda.sut.ac.jp

Abstract

This paper first describes a computer-assisted environment for
learning by problem-solving we have been developing for some
years and now we are reengineering into a network distributed
collaborative environment. According to the lessons learned
in trying to obtain maximum scalability indispensable for
training generalized ability of planning for solving problems, we
renounce possibility of automatic plan generation and, instead,
propose an authoring environment that provides the authors
with on-the-shelf repertoires of reusable problem types with
plans for solution as well as assistance of execution, both being
embedded therein.

Keywords: computer-assisted learning by problem-solving,
fostering ability of planning, scalability of material, reusable
problem types.

Résumé

Cet exposé, en premier, rapporte sur un environnement assisté
par ordinateur, pour l'apprentissage par solution des problèmes,
que nous avons développé depuis quelques années et dont nous
faisons remodelisation vers un environnement où les
participants collaborent étant distribués sur le réseau
électronique. Suivant les leçons tirées d'expérience d'essayer
d'obtenir la maximum d’extensibilité des répertoires de
problèmes indispensables à former la capacité générale
d'organiser la processus à résoudre des problèmes, nous
renonçons la possibilité de la production automatique des plans
d'organisation et à sa place proposons un environnement pour
les auteurs qui leurs donne répertoires, sur le rayon, des types de
problèmes réutilisable avec menus des plans d'organisations à
résoudre des problèmes aussi bien que l'aide d'exécution de la
solution, tous encastrés dans les définitions des types de
problèmes.

Mots-clés : apprentissage assisté par ordinateur, former la
capacité d’organiser solution des problèmes, extensibilité de la
matière, types de problèmes réutilisables.

Introduction
A number of intelligent tutoring systems and interactive learning
environments have been developed and used [1 ; 2]. Some of
them focused intelligent management of branch-indexed
coursewares with traditional contents [3 ; 4]. Others provided for
assistance of specific problem-solving tasks such as geometric
proofs or algebraic manipulations, word problems or mechanics
problems, and so on [5 ; 6 ; 7].

Taking into account the ever growing variation of problems we
encounter in the process of fulfilling the role we play in either
professional or everyday life, it seems impossible to know in
advance everything necessary to solve problems. And the ever
increasing accessible resources of information and knowledge
available for solving specific problems tend to make us think we
can attack those problems by retrieving necessary information in
the resources on the fly. According to the pragmatic study of
problem-solving, e.g. by G.Polya [8], Clancey [9], however,
problems cannot be solved only by having a knowledge
repertoire, but the ability of planning is required as to when and
how to use what sort of knowledge in the process of solving
problems, as tailored to the problem context concerned.
Therefore, the final goal of learning nowadays should be
acquisition not so much of specific knowledge collection as of
the ability in general of planning how to solve problems. Very
few systems, however, seem to have been implemented which
assists planning problem-solving in pre-professional education.
One of the rare examples was GUIDON [9] made by Clancey
which assisted medical students of diagnosis of blood infectious
diseases. From the constructivistic view points [10], we are
aiming at providing the students in engineering education with a
workbench environment for learning by problem-solving on
which they can collaborate, discussing, in editing plan maps for
solving system-given problems with assistance providing
repertoires of problem types and embedded plans for solution.

We first describe our prototype system implementation as a
case study into this direction, and comment on the results of an
experiment. The top most concern in the study was investigation
into scalability of such a system, because a sizable number of
different problems with assistance are needed for the learners to
acquire ability of solving new problems by generalization
through experience of planning solution of related and
differentiated problems.
 Therefore, we then discuss reusable problem types and,
renouncing possibility of automatic plan generation by the
system because of the inability of the present computer systems
of embodied interpretation of the context of the problems,
propose an authoring environment which provide the authors
with on-the-shelf repertoires of reusable problem types and
plans for solution as well as assistance of execution being
embedded therein. The authors can edit individual problem
description and plan options for solving them combining the
reusable problem types and augmenting problem-specific
procedures if necessary. They should edit textual and
diagrammatic interface that will bridge the abstraction of the
reusable problem types and the concrete context of the problem.

A Problem-Solvers' Assistant
CAFEKS, abbreviation of "Computer-Assisted Free
Exploration of Knowledge Structure", is a computer-assisted
explorative environment for learning by problem-solving we are
still in the midway point of developing [11 ; 12].

Now we describe first the authoring environment in which
the authors should prepare a repertoire of problems as well as
problem types to be used in the plans necessary in solving the
problems as well as the plans to be used in solving the problems
belonging to the problem types. Next we explain 5 features of
assistance the learning environment provide learners with using
the authored repertoires of problem and problem type
definitions and their embedded plans for solution. Thirdly given
is a brief description of implementation and finally commented
on is extension to a collaborative learning environment now
under way.

Authoring environment
The system provides for an authoring environment by which the
author, maybe a domain-expert instructor, prepares a repertoire
of problems with certain educational goals to be achieved in his
domain. The same authoring system is used by the author or
others, who might be domain knowledge experts, to add new
entries to the repertoire of reusable problem types (simply
"problem types" hereafter) combinations of which provide
options of plans for solving the problems in the experts' domain.
To each of the problem types are defined what is ASKED to be
obtained under what conditions and what kind of data be
GIVEN. Some of the problem types are strategic or
meta-cognitive and others are certain ways of applying
knowledge units. In each of the problem types the authors are
requested to edit and embed plan options for solving problems
belonging to the type by connecting the GIVENs with ASKEDs
of problem types selected from the repertoire, thus establishing a
usage tree of problem types including recursive usage. The
problem type located at a leaf position of the tree without any
embedded plan option is a certain way of using a knowledge unit
and should be provided with an interactive process of assisting its
execution. To each of such problems as do not belong to any
problem type should be authored plan options for solving the
specific problem by connecting the problem types selected from
the repertoire with possible supplement of specific procedures.
For each of the problems also required to be edited are
descriptions of the feasible solution processes along feasible
solution paths among those obtained by expanding the
embedded plans. The descriptions are in XML format and the
corresponding locations of the texts are tagged by the problem
type ID used there and the tags will be used to highlight the
locations when they are retrieved and displayed.

Learning environment: features of assistance
The system provides the learners with a workbench
environment whose assistance is featured as follows:
1. First, the learners are assisted of comprehension of the

system-given problem by describing what is ASKED,
GIVEN what conditions and data, using the frameworks
offered by the system.

2. Next, they are assisted of planning to solve the problem by
selecting problem types from the menu and connecting
GIVENs with ASKEDs each other to delineate "plan maps"
along which the learners are encouraged to solve the
problem by themselves.

3. They can also retrieve and refer to the solution process of
such problems in the repertoire as are using, in the solution
plan, the problem type they specified and the corresponding
part of the solution process is highlighted.

4. When they deadlock or want to verify their solution, they
can consult the system for the embedded menu of plans for
solving the given problem as well as those for solving
problem types comprised in the plans the learners have
selected from the menu. They can thus proceed expanding
plans they selected from the embedded menu or returning to
self-planning on the way. When they come to a problem
type which has no plan any more and we call "leaf" type, its
GIVEN having been instantiated, they are assisted of
executing solution of the instantiated problem type.

5. The system allows the learners to redo their selection of
problem types in the self-planning phase and to redo plan
selection and/or execution of leaf problem types in the
consultation phase.
Throughout the system the design of reusable problem types

are most critical and the levels of the learners should be taken
into account in providing them with the more abstract problem
types.

Implementation
The system is implemented in Java, using also XML and Prolog.
It consists of CAFEKS package and domain packages, as
shown in Figure 1.

Figure 1. System Architecture

Each package consists of two packages. The one is
"workbench package" whose classes are responsible for logical
management and processing of the functions for both authoring
and learning environment, and the other is "Media Metaphor
Object(MMO)" package which takes control of the
learner/author-computer interaction via GUI in relation to the
workbench classes.

The CAFEKS package consists of core classes independent
of domains for management of sessions, libraries of problems
and problem types, as well as an abstract problem type class and
a plan class from which domain specific problem types and
plans are extended.

A domain package consists of specific
problem type and plan classes dependent on the specific domain
concerned.
We are developing a prototype system taking up direct current
electric circuit theory as the sample domain. In the following
described is the implementation of the 5 features of assistance
mentioned in section Learning environment : features of
assistance.

Figure 2. A Screen Snap Shot of Planning Assistance

For feature (1), a laboratory-made tiling editor was

implemented in the DC circuit analysis problem type class in
order for the learners to construct circuits and specify symbols
designating resistances, source voltages or specifying closed
loops, etc. For features (2) and (4), the "plan map" editor was
implemented in the plan class with a function to save the edited
plans into files by serialization in XML and to load
leaner-specified plans by deserialization. Also implemented for
feature (4) was assistance of executing a leaf type problem
which prompts the learners to input their solutions and gives
them feedback of verification. Fig.2 shows a screen snap shot
of planning / execution assistance. At the right-bottom is given
the training problem. At the top-left is the menu of the built-in
problem types. On the right hand upper area, the learner can
draw the circuit with specification of symbols or values of
currents, voltages and/or resistances. On the left hand middle
area, the learner can edit her/his plan, selecting problem types
from the menu and connecting or expanding plans embedded in
the problem types. You can see on the plan map that, before the
time the screen shot was taken, in planning phase, the problem
type "Obtain Branch Current of DC Circuit" was selected, and
the plan "Using Equivalent Transformation" was adopted
consisting of the problem type "Equivalent Transformation of
DC Circuit" and recursive call of the problem type "Obtain
Branch Current of DC Circuit". Then the latter was expanded
and the plan "Using loop equation" was selected consisting of
the problem types "Specify Loops of DC Circuit", "Obtain
Loop Equations for DC Circuit" and "Solve Linear Equations".
For feature (3), solution process was tentatively described in

TEX format for each of the problems in the repertoire and tags
were written in the TEX comments designating the problem
types used in the tagged locations of the solution process.

The TEX files were parsed by a CGI script and the tags were
used to search for such problems and locations in the description
of the solution process as using the learner-specified problem
types and to highlight those locations in displaying the
description.

Now an editor for the solution process descriptions in XML
format is being developed.
For feature (5) the system allows the users to redo executing or

planning any portion of the plan map using a kind of truth
maintenance technique. In order to enable redoing execution,

the status of the result of executing an executable sub-problem is
recorded by serialization. In redoing, the session before redoing
is saved and a new problem-solving session is created using the
status record, thus allowing the learners to recapture and resume
the previous sessions.

Towards Collaborative Learning Environment
We are now reengineering the stand-alone system into a
collaborative learning environment on an intranet. Using Java
RMI (Remote Method Invocation) mechanism, we set up
bidirectional channels between the clients via a server
controlling the communication in order to realize a collaborative
workbench environment and a voice chat system with
annotation by voice recognition for use in reflection. As for the
collaborative workbench with MMO environment, the learner
client systems are run in synchronism, while each client has its
own private workbench with MMO and the learner can
temporally replace the status of the private workbench with that
of the collaborative one and privately extend the collaborative
work. And, conversely, s/he can propose and upload the result
of her/his private work to the collaborative workbench. In the
collaborative environment, the method invoked by a learner's
action approved by the members via the voice chat system, is
executed at all of the clients. In prospective of realizing the
environment on the internet in the future, we adopted a scheme
in which a method invocation is encoded at the transmitter side
into a string, being sent to and interpreted at the receiver side.

A Preliminary Experiment for Evaluation
We made a preliminary experiment for evaluation of the system
concept to see if feature (3) of assistance, although implemented
following the tentative specification mentioned in section
Implementation, works for learners to be motivated to use
newly learned plans in solving new problems.

The target domain was direct current electrical circuit theory.
The 22 reusable problem types were provided among which

many were used in the solution process of the 10 sample
problems in the repertoire.

Fig.3 shows a snap shot of plan-retrieved solution process
description taken in the experiment. 12 subjects, all being the
3rd year university students of electrical engineering course,
were divided, according to the pretest, into two groups with
similar distribution of grade points. They were given training
problems difficult to solve without using plans suggested :
deletion of the to-be-zero current branch and use of the
compensating voltage source. While studying the training
problems, the 6 control group students were allowed only to
look paper handouts of sample problems with solution and the 6
experiment group students used the computer system being
allowed to retrieve such sample problems and locations in the
solution process where plans and problem types they specified
were used.

In the post test, a problem closely related with the training
problem was given. 5 out of 6 students of the experiment group
tried to use the plans suggested in the training, whereas only 3
out of 6 students of the control group tried to use them.

This difference between the groups and the answers of an
enquete and the interviews after the experiment at least suggest
the favorable effect of plan-focused retrieval of the solution
process in motivating and encouraging use of the newly learned
knowledge.

Figure 3. A Snap Shot of Plan-Retrieved Solution Process Description

Reusable Problem Types and Heuristics :
Lessons Learned
We searched for structures of plans reusable in as large classes
of problems as possible and found that it was possible to classify
reusable types of problems according to the
domain-independent categories of what is asked and types of
given conditions, and to write down their plans consisting of
connections of domain-independent problem types.

These problem types the top level plans comprise can
subsume domain-dependent problem types which have plans
consisting of domain-dependent problem types.

The domain-dependent hierarchies of problem types and
plans for solving problems of the type depend on the problem
domains, and problem types comprised in the plans finally goes
as far as to those representing certain ways of using
domain-specific knowledge units not made to have plans any
more.

From the viewpoint of how to discover plans for solving
mathematics problems, G.Polya studied useful heuristics [8].
Each of the heuristics actually is useful in certain phases of
solving very broad types of problems in any domain in which
mathematical formulation is used. Polya's heuristics should be
for any level of problem types in the plan-problem type
hierarchy.

Plans and heuristics, however, can never be directly
transferred to the learners. The only way of training the learners
to be able to use them by themselves is through experience of
solving problems with proper heuristics and plans timely
suggested [9].

Accordingly, systems are more demanded which provide for
assistance of planning to solve problems and to use heuristics.

As was stated in Introduction, we are aiming at providing
the students in engineering education with a workbench
environment for learning by problem-solving on which they can

collaborate in editing plan maps for solving system-given
problems with assistance providing repertoires of problem types
and embedded plans for solution.

In such an environment, a sizable number of variations of
problems are needed in order for the students to inductively
capture, between different problems, common features enabling
them to apply the same or similar plans and heuristics and also
to differentiate usage of plans and heuristics according to the
problems concerned.

Therefore in developing systems that assist learning by
problem-solving, scalability in providing problems with
assistance is a very important issue.

Ideally, we might let the system have capability of
autonomously producing problems and autonomously
developing plans for solving them with advice of heuristics.
Both projects, it seems, however, be doomed to fail because we
(with other AI researchers presumably) found the following:

1. Preparation of semantic frameworks necessary for the

individual problem description to produce linguistic
expressions for conveying meaning to the students (and
vice versa, from linguistic expressions to semantic
framework expressions) is often ad hoc and the conversion
requires capturing context whose bodily origin [13]
prohibits making explicit rules of conversion as well as
universal semantic frameworks. And therefore, it is
impossible for the system to provide such frameworks and
conversion rules in advance of problem generation: e.g.
word problems : e.g. linguistic expressions of problems on
electromagnetics or 3-dimensional vector analysis can
never be complete, and require a lot of default
interpretation in converting them into a coordinate system
description which is the only logical framework for such
problems: e.g. in piping unix commands, grep | sort results
in the same as sort | grep; any knowledge explaining why
this is so should be ad hoc.

2. Selection of problem types and knowledge units to be
applied in a plan largely depends on the context of the
problem and often needed is to introduce pertinent
assumptions and verify afterwards: e.g. a moving body
could be deemed a point mass or should be treated as a
rigid body: e.g. the mass of the pulley could be neglected or
not in the apparatus of Atwood: e.g. applying static or
dynamic friction coefficient or neither, assuming the mass
being stationary or moving on or off the slope.

3. Use of the problem types and knowledge units must be
adapted to the problem context [14] by way of procedures
specific to the problem: e.g. ways of dividing a given 3D
figure into primitive figures or introducing certain
augmented figures for obtaining its volume could not be
generalized as rules: e.g. it seems impossible to work out
rules on introduction of pertinent auxiliary figures in
geometric proofs or construction problems.

In consequence, we are forced manually to prepare

repertoires of problems aiming at certain learning goals and
manually to provide the problems with plan options for assisting
solving problems as well as advice of heuristics to assist
discovering plans. Nevertheless, in our experience, it seems
possible to design such a repertoire of generalized reusable
problem types with varied domain-dependency and ways of
using domain-dependent knowledge units as could actually
solve, via combination, problems found in the textbooks of the
mathematically-oriented domains of higher education. And
planning level semantic frameworks for producing expressions
necessary and sufficient to discriminating applicability of those
problem types could be devised. Moreover, such an abstract
level of semantic framework is necessary as discriminating
applicability of the problem types and knowledge units
appearing in the plan. The linguistic level of semantics is never
made use of. Linking the abstract level semantics with
students' comprehension is made via template-grammatical and
text-diagrammatical interfaces embedded in the individual
problems. In conclusion, being provided domain-dependent
library of reusable problem types whose GIVENs and ASKEDs
as well as plans for solution are described using such semantics
as necessary and sufficient for determining their applicability, it
will be possible to provide domain-expert instructors with an
environment that assists authoring the problem descriptions,
plans and heuristics for solution.

Examples of Reusable Problem Types and Plans
Problem-solving is defined in most general terms as an activity
of selecting from among a given set S of candidates all or some
of such members (ASKED) as satisfy given conditions
(GIVEN). Set S may be finite, countablly infinite, or neither. In
case S is finite, a general plan of one by one examination could
be used.

List of Typical Problem Types:
 CATs (Categories) in the following are:
entity/field/geometric/symbolic system
 To be observed or to be constrained are:
category/attributal values/structures/relations/
time-space locations (or movement)/ operations (or
construction)

Objects satisfying the constraints are variables, while objects
as observed are not.

From GIVEN excluded are available knowledge units which
could be freely used.

1. CAT : proof problem:
ASKED: proof processes. GIVEN: propositions to be proved
2. CAT : attributal value constraining problem:
ASKED: attributal values, GIVEN: constraints
3. CAT : relation constraining problem
ASKED: relations. GIVEN: constraints
4. CAT : structure design problem
ASKED: structures. GIVEN: constraints, min/maximization of
attributal values
5. CAT : operation design problem
ASKED: series of operations. GIVEN: constraints,
min/maximization of attributal values
6. CAT : construction design problem
ASKED: series of construction operations. GIVEN: constraints,
min/ maximization of attributal values
7. CAT : diagnostic problem
ASKED: category/structure/relation. GIVEN: observations
8. CAT : knowledge discovery problem
ASKED: proposition (or knowledge). GIVEN: observations

Once solved, the result makes a knowledge unit. Conversely
from any knowledge unit, problems can be created.

An example of geometric attributal value
constraining problem
ASKED: attributal value.
GIVEN :constraints: category of geometric figure.
Domain Problem:

Obtain the volume of a rectangular frustum given the height
and the lengths of the upper and lower edges.

Generic Plan:
Discover and use the relation between the attributal values

of the parts and that of the whole of the geometric figure. If
needed, introduce auxiliary figures.

Domain Plan:
prob: Introduce 2 auxiliary rectangular cones.
prob : Calculate the volume of the frustum as difference of

that of the larger cone and that of the smaller cone.
prob: Assume the unknown height of the smaller cone.
prob: Obtain the edge ratio equation with the triangles in the

similarity position

An example of entity/field attributal value
constraining problem
ASKED: attributal value.
GIVEN: constraints: 2 entity system time-space location in a
field.
Domain Problem: 2 bodies b1, b2 fall from a tower in the
gravity field. b1 falls from the top of the tower, b2 falls from
height b[m] down from the top when b1 has fallen a[m] down
from the top. Obtain the height of the tower and the time
required for b2 to fall to the ground.
Generic Plan:

Discover and use laws of the 2 entities B1 and B2's
movements.
 Divide time into intervals with simple movements of B1,

and B2.
 Solve for the movements of the entities, B1, B2 in each

interval.
 Represent constraints.
 Solve for the ASKED.
Domain plan:

prob: Usage of Newton's law of motion of point mass.
prob: Divide time into 2 intervals, assume the border time, and

the border states.
“single body falling interval and 2 bodies falling interval”
“border time t1 and border velocity v1 of b1”
prob: Solve for the movements in the first interval.

 prob: Represent constraints.
 Prob: Obtain values for the border.

 prob: Solve for the movements in the second interval.
 prob: Represent constraints.
 prob: Solve for the ASKED.

An example of entity/field structure design problem
ASKED : structure of an entity.
GIVEN : partial structure, attributal values, minimize an
evaluation function.
Domain Problem:
Design a coded communication system consisting of an
encoder-decoder pair and a digital channel, the digital channel
being a digital modem channel consisting of a
modulator-demodulator pair and a physical channel, the
physical channel consisting of a transmitter-receiver pair and a
radio propagation media. The information bit rate and the BER
quality are given as requirement and minimize combined
transmitter-power and bandwidth evaluation function.
Generic Plan:

Assume a structure ST with candidate parts PT hierarchy.
Define constraining variables with which parts PT are to be

connected .
For each of the candidate parts PT, solve the relation

constraining problem as to the relation between those variables
and, if necessary, record the results in a database.

Solve the attributal value constraining problem as to the
value of the evaluation function with the given constraining
conditions.

Change ST replacing PT and repeat the above to find
optimum value of the evaluation function.
Domain Plan:

prob: Assume a coded communication system hierarchy
consisting of an encoder, a digital channel, a decoder; the digital
channel consisting of a modulator, channel, demodulator; the
channel consisting of a transmitter, propagation media and a
receiver.

prob: Define constraining variables; bit transmission
rate(BTR), bit error rate(BER), band width(B), signal-to-noise
ratio (SNR), transmitter power(TXP), receiver noise figure(NF),
attenuation on propagation (ATT), etc.

prob: For each hierarchy and each scheme, solve for the
relation between outer BTR, BER and inner BTR, BER, or
between B,SNR and BER, or between TXP, ATT, NF and
SNR, etc.

porb: Minimize combined TXP and B
evaluation function with the information
bit rate and the BER quality being given.
prob: Replace the codec/modem schemes and repeat the

above to find the optimum.

Conclusion
We first described CAFEKS, a computer-assisted explorative
environment for learning by problem-solving we are developing
and extending to a collaborative environment. According to the
lessons learned in trying to obtain scalability indispensable for

assisting the learners to acquire generalized ability of planning
for solving problems, we discussed reusable problem types and,
renouncing possibility of automatic plan generation by the
system because of our inability of devising universal semantic
expression frameworks for the computer and the inability of the
computer of interpreting the context of the problems, we
proposed an authoring environment which provides the authors
with on-the-shelf repertoires of reusable problem types, and
plans for solution as well as assistance of execution, both being
embedded in the problem types. Using these reusable problem
types and their semantics in describing plans for solving
individual problems and manually filling the gaps between the
problem-specific semantics of bodily origin and the planning
level abstract semantics will provide the learners with learning
environments scalable in the range of problems covered by the
system sufficient for assisting the learners to acquire ability of
planning.

References
[1] Wenger E. 1987: Artificial Intelligence and Tutoring
Systems, Morgan Kaufmann.
[2] Forbus K.D., Feltovich P.J. 2001: Smart Machines in
Education, AAAI Press/The MIT Press
[3] Kiyam,M.,Ishiuchi,S.,Ikeda,K.,Tsyjimot,M.Fukuhara,Y.
1997 : Methods for the Web-Based Intelligent CAI System
CALAT and its Application to Telecommunication Service,
Proc. AAAI-97,Providence RI
[4] Ayoro,L.,Dicheva,D. ,Velev,I. 2001 :A Concept Based
Approach to Support Learning in Web-Based Course
Environment, AIED01, pp.1-12. IOS Press
[5] Anderson,J.R.et al. 1985 :The Geometry Tutor, Proc.IJCAI,
LosAgeles pp.1-7
[6] Hirashima,T.,Horiguchi,T.,Kashihara,A.,Toyoda,J. 1998 :
Error-Based Simulation fro Error Visualizationand Its
Management, International, The International Journal of AIED,
vol.9,no.1-2,pp.17-31
[7] VanLehn.K. 2000 : Andes: A Coached Problem Solving
Environment for Physics, ITS 2000, pp.133-142
[8] Polya,G. 1962 : Mathematical Discovery, Vol.1-2, John
Wiley & Sons
[9] Clancey,W.J. 1987 : A Knowledge-Based Tutoring: The
GUIDON Program, MIT Press
[10] Jonassen,D.,Mayes,T.,McAleese,R. 1992 :A Manifesto for
a Constructivist Approach to Uses of Technology in High
Education, in Duffy,T.M.,Lowyck,J.,Jonnassen, pp.231-247,
D.H.(Eds.): Designing Environments for Constructive Learning,
Spriner-Verlag
[11]Fujihira M., Kawamura T., Kawakami K., Itami M., Itoh K.
1999 : CAFEKS: An Atchitecture for Evolutional Development
of Interactive Learning Environmnt with Coached Problem-
Solving, Proc. ICCE99, vol.1, pp.915-922
[12] Kawkami K., Watanabe T., Tateno M.,Tabaru Y., Itami M.,
Itoh K. 2001 : Learning by Problem-Solving Assisted of
Planning and Retrieval of Sample Problems with Solutions
Indexed by Structured Solution Plan, Japan Journal of
Educational Technology,vol.25,no.2
[13] Lakoff,G. 1987 : Women, Fire, and Dangerous Things,
The University of Chicago Press
[14] Dieter 2000

