
HAL Id: edutice-00000668
https://edutice.hal.science/edutice-00000668

Submitted on 19 Oct 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The ExploraGraph Advising System : an Ergonomical
Evaluation of the Editor
Aude Dufresne, Céline Schlienger

To cite this version:
Aude Dufresne, Céline Schlienger. The ExploraGraph Advising System : an Ergonomical Evaluation of
the Editor. Technologies de l’Information et de la Communication dans les Enseignements d’ingénieurs
et dans l’industrie, Nov 2002, Villeurbanne, France. pp.299-305. �edutice-00000668�

https://edutice.hal.science/edutice-00000668
https://hal.archives-ouvertes.fr

The ExploraGraph Advising System :
an Ergonomical Evaluation of the Editor

Dufresne, Aude , Céline Schlienger**

Université de Montreal, C.P. 6128, Succ. Centre-Ville, Montréal, QC, Canada H3C 3J7
Associate researcher, LICEF – dufresne@com.umontreal.ca

Abstract
The first aim of the ExploraGraph project was to design
a better interface for learners taking distance courses
and also to integrate in it adaptive functions and advices
to support them. The system offers a generic interface,
in which courses can be defined as conceptual graphs
describing structures of concepts, activities and/or
documents. ExploraGraph serves as a front to access
web courses.; local and distant applications, documents
and forums may also be organized into a course. The
system uses a Navigator for learners and an Editor for
professors to design the learning and supporting
environments. We present here the results of the
ergonomical evaluation of the ExploraGraph Editor.
Observation of professors trying to use the system to
describe a course highlight the complexity of the
activity of creating courses as a structure of activities
integrating multiple references, but especially to design
support functions in such a learning environment,
taking into account individual progression. This
research presents how the system could be made more
generic, using templates of generic types of support.
Thus we propose elements for an ontology of support in
telelearning environment
Keywords : telearning, interface, ergonomy, evaluation,
support system, ITS, knowledge engineering, ontologie.

Résumé
L’objectif du projet ExploraGraph était de concevoir
des interfaces adaptées pour supporter les activités de
l’apprenant suivant des cours à distance, qui intègre
aussi des fonctions adaptatives de soutien et de conseil.
Le système offre une interface générique, qui permet au
professeur de définir l’accès à un cours au sein de
graphes conceptuels présentant les structures
d’activités, de concepts et/ou de documents.
ExploraGraph sert ainsi d’interface pour accéder à des
documents ou à des applications locales ou sur Internet.
Le système est composé d’un Navigateur pour les
étudiants et d’un Éditeur pour les professeurs. Nous
présentons ici les résultats de l’évaluation ergonomique
de l’Éditeur ExploraGraph. L’observation de
professeurs apprenant à utiliser le système pour définir
des cours fait ressortir la complexité des activité de
création d’un cours intégrant de multiples références,
mais en particulier d’associer des fonctions de soutien,
qui tienne compte de la progression individuelle. La
recherche suggère des modifications visant à rendre le
système plus générique en utilisant des gabarits de
règles génériques. Nous proposons quelques éléments
d’une ontologie du support au sein d’un environnement
de teleapprentissage.
Mots-clés : téléapprentissage, interface, évaluation
ergonomie, tutoriel intelligent, acquisition des
connaissances, ontologie.

Context of the Research

The ExploraGraph© system was developed in
collaboration with the LICEF, based on their distance
learning architecture model (Paquette, et al. 1996). It
was part of the Human Interface project in the context
of the Canadian TeleLearning Network of Centres of
Excellence.
This research (Dufresne, 2001a) stems from a
preoccupation for interface and communication design
in ITS especially in the context of distance education,
in very open domain of learning. Many ITS models
depend on a highly detailed representation of the
domain to be learned, where knowledge can be tested
at micro level and inference can be made among
knowledge elements. It is then possible to design
natural language understanding or specific
explanations or deitic demonstration for a given
problem or scene layout. Our problem was to
generalize the principles of support, to make them
accessible when the models of the domain where more
shallow; when the programming of support was to be
done by professor with no special training. In such
context, evaluations cannot be as detailed and more
self-assessment is necessary to access the learner’s
model.

The support functions were to be integrated in a
general course editor and have to based on principles
that could be applied to extract constraints in tasks and
to give advice; to present demonstration and suggest
content elements using a generic editor. In other to
enrich the contextual model and also the means of
support we developed a dynamic and adaptive interface
in which we experimented various dimensions of
personalized support.

The first aim of the ExploraGraph project was to
design a better interface for learners and to integrate in
it support based on an “overlay model” of the learner.
The interface was designed to make conceptual and
pedagogical structures visible, and to use this interface
as the gateway to the course. The access through the
conceptual structure front-end, made it possible to keep
a trace of the learner activity and to use it to give him
feedback on what he had done, what he had to do. The
learner could control is learner’s model, by marking
what he thought was finished as he progressed. A
structure of possible goals or intentions were also

accessible to the learner, so he could choose an
intention and the interface would advise him and
support is exploration, by popping the right graph, the
right description of activity depending on where that
specific learner was in his progression. In the last
version of the system, the learner could even express
preferences for help (more or less) and choose a coach
with a specific personality. Coaches were different
Microsoft agents avatars, each one addressing a
specific type of learner (Martinez, & Bunderson,
2000). Different rules for support could be defined
depending on the context – task, progression, intention,
preferences and coaches (Dufresne, 2001).

Though the principles of the interface were
promising, the bottleneck of the system was the
definition of the rule-based support system. The more
we were refining the model and adding complexity to
it, the more intractable became the possible
combinations of rules and the dynamic interaction
among them, In fact the ExploraGraph system was a
designed out of human-computer interaction
preoccupation to improve the interface for the learner,
but the same approach was now needed to facilitate the
task for the author of the ITS, We studied how the

Editor was being used, in order to study the course
editing process and to improve the interface to support
this task (Schlienger, 2001).

Ergonomical Evaluation
The ExploraGraph Editor was developed initially as a
mean to describe the conceptual graphs structures of
the Navigator so the learner interface could be tested.
The rule definition interface was later added, so
different hypothesis on the structure of the support
system could be tested (figure 1). In this context the
interface of the conceptual graph Editor and of the
advising system had only been used by the researchers
themselves. They had gained experience on developing
and debugging the conceptual graphs and the help
system, using some testing and some experimentation
with learners, followed by inspection of the traces of
execution. If the first prototype of the Editor was found
useful to make the proof of the concept of this form of
adaptive and contextual support, but many limitations
were found in the validity of the developed
applications:

Figure 1. Interface of the ExploraGraph Editor where the conditions of appearance of a rule and the support actions
are defined.

It was difficult to create the conceptual graphs and
to assess their completion and validity (missing links,
misuse of the conceptual ontology, incomplete
definitions). Even for us, it was almost impossible to
create a valid rule-based support system, insuring its
validity and completeness – misplaced, incomplete and
overlapping support rules.

The general model of support was still lacking a
more generic model that could guide the development
of the rules.

But more importantly we wanted to test the system
with the intended users (pedagogical engineers), so we
could make it usable for them. So we found it
important to make a more thorough analysis of the
Editor Interface with real users, in order to test and
improve it. Nielsen (2001)1 said ‘usability testing
means more than putting products through their paces
in a lab’, it has to experimented on real tasks with the
targeted users.

Methodology
Observational studies are a concrete mean of analysing
the real user interacting with the real system and not
just for checking usability issues per se but also how a
system is useful to the task when one uses it. This
evaluation method means that the user is involved in
the software design process right from where and for
what they need it. As far as ExploraGraph was
concerned, we complemented user testing with a focus
group and interviews as well. Also, to test for the
suggestions we used a low-fidelity prototype.

ExploraGraph Editor empirical evaluation targeted
two goals: 1) to test the software usability in itself and
2) to gain suggestions on some extra functionalities to
supplement it. Ease of use, ease of learn, usefulness of
the features offered and wording were the principal
issues that we investigated. The goal of the study was
to simulate the real use of ExploraGraph while
completing predefined tasks.

During a test (see figure 2), each subject was hooked
up to a microphone to record what he said. Each user
was accompanied by a person responsible of the
experimentation next to him and a third person placed
behind them to take notes of what was going on
between them and the machine. The latter was asked to
think aloud all impressions, questions and suggestions
that could possibly run through their mind. Although
the verbal protocol has its drawbacks (i.e. interrupting
the user while he completes his task), it certainly gives
access to spontaneous feedback from the user gathered
in situ. Afterwards, people tend to forget the problems
they encountered using the system.

1 “Ease of use doesn't come easy”. Electronic business,
12/01/01. http://www.e-insite.net/eb-
mag/index.asp?layout=article&stt=000&articleid=CA183275
&pubdate=12/1/2001

Figure 2. Experiment of the ExploraGraph Editor.

To explore how the ExploraGraph could be
improved, we prepared a paper prototype, which was
used after the real system to get feedback on potential
modifications of the system. We asked the users to
imagine how they would define contextual help with
both ExploraGraph and the paper prototype, so that we
could observe the pros and cons of the each version. At
the end of the experiment, users were invited to
comment on their experience and to share their general
feelings and thoughts about the software.

For each major functionality, we started out
breaking down the tasks in sub-tasks to cover the
various ways possible to complete a single task. We
then invented a scenario to put the user in a make-
believe situation where they were asked to accomplish
some work which involved to create a new graph, to
draw it with its nodes and links related to some content
and to define contextual help. Small texts were given
as guidelines as to what help was necessary and for
what purpose.

As a tool to collect the data more easily, an
observation grid was developed taking into account:

• the time to complete the task,
• the ExploraGraph help index chapters consulted

if any,
• the questions asked by the subject,
• the mistakes made by the subject,
• the subject’s satisfaction where applicable,
• the user’s actions
• and a last column was devoted to questions to

ask the user during the test, to investigate
problems.

Each testing session lasted three hours. After
greeting the subject and thanking him for participating
in the test, we proceeded with describing the test
agenda. A questionnaire was then handed out while we
were reassuring him that all data collected would
remain anonymous and confidential. ExploraGraph

was then presented to the tester and he could even try
the software out. We would show her what the
application was for and hence allowed her to see the
result of what would be asked from her, reminding her
of course that the machine was the one tested through
the experiment not the person… After insisting on the
importance of the think aloud process, the subject was
left to go through the prepared scenarios in a maximum
of two hours.

Subjects

Before starting the empirical study, we chose the
subjects very carefully. On line or distance course
designers were the principal audience targeted since
The ExploraGraph editor is aimed at helping them
define support for their course. A brief questionnaire
was to be filled by the chosen testers so as to collect
information that would help interpret results afterwards
if necessary.

For the experiment ten (10) participants were chosen
among graduate students, research professionals and
professors but all involved in distance education. All
but a few had experience designing telelearning

courses and none had taken any as students. Some had
already seen demos of the ExploraGraph system. It is
important to mention here that to make sure the tests
would run smoothly, we had run some pre-tests
beforehand.

All the test sessions took place within the timeframe
of a week. Although the test as a whole ran for three
hours, the subjects remained on task and even
mentioned their appreciation of the experiment at the
end. All subjects succeeded in creating graphs for a
course, while they almost all failed at defining help.
Some lacked time while others had barely the time to
define some which allowed only four participants to
test the low-fidelity prototypes.

Results

Overall, participants liked the way ExploraGraph
allowed to visually navigate through a course content
with graphs and the idea of being able to define
contextual help themselves through an editor appealed
greatly to them, even though they all agreed in saying
that it was to complex to use in its actual state.

Erreur ! Liaison incorrecte.
Table 1 Structure of the support system

The overall analysis of the observations lead to the
description of four different types of usability
problems:

• the way information was presented - Too many
parameters to set, lacking organization,
feedback and affordance2.. There were too many
levels in the definition of the support structure :
- association to a course element;

- contextual triggering event and conditions
- support defined as group of actions
- individual actions with their parameters.

• the wording used, especially in relation to the
physical description of the elements in the
animation (mass, elasticity of links), or in the
description of possible events, conditions or
support actions in the environment.

• the modality of dialog chosen (For example, the
node creation was only possible using keyboard-
based commands. It was not possible to create
graphs, using the menus or a toolbar)

• the understanding of the software functionalities
and architecture (ExploraGraph features are
unusual and complex, like for instance the fact
that a node was an instance of a content but was

2 « Ensure an object displays good affordance. That is,
the user can easily determine the action to be taken
with the object. » IBM ® User Interface Architecture,
Copyright IBM Corp. 2001

not the content itself was not easy o grasp at
first).

The subjects made numerous suggestions during and
after the experiment. This correspond to the three
categories of the Seeheim’s User Interface model
(Green, 1985) :

• Presentation lay out (what the user sees)
• Dialog (how the user communicates with the

system)
• Functional core or kernel (model of data

processing behind the interface).
As for presentation, it was difficult to organize all

the parameters that could possibly define the support in
the ITS (see Table 1). We found that the hierarchy was
difficult to express and should be scaffolded in the
visualization.
In fact there was no view of the general structure of
decision, no model of the ITS functional core
processing that could have helped the conceptors
understand the organization in the editor interface or
could have made help them follow the execution of the
program to verify it.

Since most users had no training in knowledge
engineering, they were completely lost when asked to
define the support system. For them the planning and
validation of the rules were far too complex.

Not only were the rules difficult to define, but
following the interactions among rules, was intractable.
For example they were relatively few events that could
be used to trigger a support rule.

opening of a graph;
clicking on a node;
choosing an intention;
idle time
date
marking an activity as completed.

We had planned to present a calendar (see figure 3)
to view the organization and extension of rules in time
and access them classified by event. But it was
insufficient when many rules were overlapping for a
period, more sorting and filtering should be offered to
insure visibility for design.

Figure 3. Calendar showing the rules classified by events (color coded).

Also the definition of rules for each possible
preferences were hard to instantiate in reality. Though
the system was made to search and order rules
according to elements of the course; it was almost
impossible to know clearly were rules were missing,
and how they would be triggered in practice.

Discussion and conclusion
Toward a more usable knowledge engineering
tool for ITS.
The questions that were posed by the empirical
evaluation of the ExploraGraph Editor, where far more
complex than modifications in the lexical choices. In
fact, it suggested to restructure the rule-based system,
so it would be organized at more understandable level
for authors. There was no way the support could be
described starting at the level of rules, it was necessary
to start at a higher level, at least to give a schema of the
model of support that could be understandable.

In order to improve tools to define ITS, one must
refer to general references on knowledge acquisition
(Breuker, & Wielinga, 1987; Clancey, 1983; Dufresne,
et al. 1992; Nwana,et al.1991; Sowa, 1984) and to offer
a representation and tools where the general
organization is highlighted. As Chandrasekaran
(Chandrasekaran, 1985) proposed when defining
knowledge based system, “it is important to use the
right level of abstraction, to structure expertise and
make it understandable”. Thus in traditional knowledge

engineering approach, general models of decision can
be used to describe decision at a higher level of
abstraction before they are applied to specific cases. In
the domain of ITS different such higher level models
have been proposed.

In fact the problem of defining an ITS is solved
differently depending on the type of ITS. For example,
for computer simulation laboratories, the tutoring is
linked to the expression of the principles behind the
simulation. Ideally, an interface manager for
structuring the interaction and support should be
separated from the simulation model, but most often
help is simply embedded as general or contextually
accessible help, but which don’t adapt to the learner
understanding or progression on the task. Very often,
the tutoring associated with a specific simulation is left
to a teacher who coach students on using the system.

(Lajoie, Faremo, & Wiseman, 2001) proposed
principles that can be used to define case based ITS,
showing how cognitive apprenticeship theories can
help design support to guide the learner understanding
of the cases at hand : develop generic competencies,
perform steps in diagnosis, applying principles to
cases. Using the verbal protocol data of experts giving
support, they propose different generic types of
interventions, like bridging between the cases and
between cases and the metalevel of explanation.

Other authors suggest ontologies based on
pedagogical models to define support at a metalevel.

(Guin et al.,1993) suggests to structure the support
interaction using agents with different strategies:
• the oracle - to declare knowledge;
• the questioner – to question knowledge in order to

test and draw attention to difficult elements;
• the technicien – to describe technical procedures,

to comment and to give examples;
• the master – to judge and evaluate the progression.

(Frasson, Mengele, & Aimeur, 1997) also suggest to
have various actors interacting to suggest support; they
propose the role of the trouble maker as another
interesting metastrategy to provoke the learner in his
understanding.

Figure 4. Prototype of a more generic interface for rule editing, based on templates of pedagogical support rules –
presentation, reminder, collaboration suggestion, etc.

Using a metalevel representation to define
rules

In the context of ExploraGraph, the support may be
linked to the structure of the course, to the conceptual
graphs, to the learner’s choice of intentions and to the
menu of the application. Aside from this structure of
the application, a pedagogical structure of support
goals can be used as a mean to define templates to the
rule based system.
Figure 4 presents a proposition for a new version of the
system relying on such metalevel of strategies. For
example, choosing an activity, the author would
associate an Explain and a Reminder support rules.

The choice of a template would then instantiate a
typical conditions and support actions associated with
the templates.

• Present – help accessible at login in the week of
an activity, where the system open the
description of the activity, with a general
comment of presentation.

• Explain – detailed description accessible when
the right button is pressed, or when the learner
choose the intention -“Explore the activities” in
the week of the activity.

• Reminder – help accessible 5 days before a
deadline, when the activity is not marked as
completed.

The rules defined using templates could then be
modified to adapt them to specific cases: change de
default message, change the timing of the reminder,
etc.

The structure of the types of support actions was also
reorganized, whether controlling the application or
displaying messages. For support actions also, the
system would set by itself some of the parameters
(default avatars, default node to activate, etc.).In fact
even the structure of the control system of supports
should be redesigned to support more goal directed
organization of support, where each agents collaborate
in a more competitive and complementary way to
define the best support at on point in the learner
progression; each contributing to diagnosis and to
define parts of support messages.

• try to motivate when the learner is not
performing as he should using non-verbal
expressive behavior.

• support every work session, only once;

• give positive feedback when something is new
and positive in the learner’s model

• present to the learner every new participant,
not more than one every X minutes.

• Give feedback on the group model, every time
the discrepancy between goup and individual
models are greater than 20%

To implement this more generic goal structure in the
support system, generic templates for rules should be
designed that can be instantiated and adapted to
specific cases.

Aknowlegments
This research was granted as part of the Human
Interface project in the context of the Canadian
TeleLearning Network of Centres of Excellence.

References

Breuker, J., & Wielinga, B. (1987). Knowledge
Acquisition for Expert Systems: A Practical Handbook.
In A. L. Kidd (Ed.), Knowledge Acquisition for Expert
Systems: A Practical Handbook New York: Plenum
Press.
Chandrasekaran, B. (1985). Generic tasks in
Knowledge-based reasoning: characterizing and
designing expert systems at the "right" level of
abstraction. Second Conference on Artificial
Intelligence Applications: The Engineering of
Knowledge-Based Systems, Miami Beach(pp. 294-
300).
Clancey, W. J. (1983). The Epistemology of Rule
Based System -a Framework for Explanation. Artificial
Intelligence, 20, 215-251.
Dufresne, A. (2001a). Conception d'une interface

adaptée aux activités de l’éducation à distance -
ExploraGraph. Sciences et Techniques Éducatives,
8(3), 301-320.

Dufresne, A. (2001b). ExploraGraph : Improving
interfaces to improve adaptive support. In J. D. Moore,
C. L. Redfields, & W. L. Johnson (Ed.), AIED'2001
(pp. 306-313). Amsterdam: IOS Press.
Dufresne, A., Muzard, J., Legault, B., & Dufour, S.
(1992). ALADIN: Une interface pour supporter le
développement des bases de connaissances. ICO, 4(1-
2), 37-46.
Frasson, C., Mengele, T., & Aimeur, E. (1997). Using
Pedagogical Agents In a Multi-strategic Intelligent
Tutoring System.
http://citeseer.nj.nec.com/frasson97using.html.
Green, M. (1985). Report on Dialogue Specification
Tools. In G. E. Pfaff (Ed.), User Interface Management
Systems Berlin: Springer Verlag.
Guin, D., Billet-Coat, S., Rietz, P., & Hérin-Aime, D.
(1993). Protocole comportemental de l’interaction

didactique entre un agent artificiel et un agent humain.
In M. Baron, R. Gras, & J.-F. Nicaud (Ed.),
Environnements interactifs d’Apprentissage avec
Ordinateur (pp. 193-205). Paris: Eyrolles.
Lajoie, S., Faremo, S., & Wiseman, J. (2001). A
Knowledge-Based Approach to Designing Authoring
Tools : From Tutor to Author. Amsterdam: IOS Press,
306-313.
Martinez, M., & Bunderson, C. V. (2000). Foundations
for Personalized
Web Learning Environments. ALN Magazine, 4(2),
http://www.aln.org/alnweb/magazine/Vol4_issue2/burd
enson.htm
Nwana, H. S., Paton, R. C., Bench-Capon, T. J. M., &
Shave, M. J. R. (1991). Facilitating the development of
knowledge based systems : a critical review of
acquisition tools and techniques. Avignon 91,
Avignon. (pp. 487-500).
Paquette, G., Ricciardi-Rigault, C., Paquin, C.,
Liégeois, S., & Bleicher, E. (1996). Developing the
Virtual Campus Environment. ED-Media International
Conference, Boston.
Schlienger, C. (2001). Maquettage et spécifications
d'une interface graphique d'édition de cours (projet
ExploraGraph). LICEF.
Sowa, J. F. (1984). Conceptual Structures, information
processing mind and machine. Addison-Wesley.

